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strongly among the known scalar mesons. Finally we review the current best continuum

determination of the scalar and tensor glueball masses, the deconfining temperature, the

string tension and the Lambda parameter, all in units of the Sommer reference scale, using

calculations based on the Wilson action.
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1. Introduction

SU(N) gauge theories in 3+1 dimensions have been studied by lattice Monte-Carlo tech-

niques a long time [1]. Many low-energy dimensionless quantities are now known at the

percent level for N = 3, as we shall review. However, low-energy matrix elements of local

operators have not been given much attention. This is mainly because the lowest possi-

ble dimension for a local gauge invariant operator is four. For Monte-Carlo simulations,

asymptotic freedom then implies that the amount of statistics has to grow like a−4 to main-

tain fixed relative errors on the matrix elements [2] (a is the lattice spacing). This comes

on top of the unavoidable a−4 cost of simulating a four-volume fixed in physical units. In

particular it is very expensive to take the continuum limit of renormalized matrix elements

of the energy-momentum tensor, as is well known to thermodynamics practitioners. In

this paper we compute the matrix elements of the energy-momentum tensor between the

vacuum on the left and a scalar or tensor glueball on the right. By using a locally (i.e. on

the scale of one lattice spacing) smoothened gauge field, we are able to reduce the prefactor

of the ∼ a−4 cost function to a manageable size.

While these matrix elements have been computed previously [3], our technology differs.

In particular our lattice spacings are significantly smaller and we improve on the statistical
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accuracy of the matrix elements in the continuum by a factor of about two. This im-

provement is due mainly to the reduced uncertainty on the non-perturbative normalization

factors of the energy-momentum tensor.

One of our motivations is the possibility to confront model predictions with the lattice

data. Indeed there are QCD sum rule predictions for these matrix elements [4]. Fur-

thermore, models of QCD based on the AdS/CFT correspondence readily predict many

stables glueballs [5], but the spectrum of the SU(3) theory contains only two scalar and

two tensor strictly stable glueballs, and this is likely true at any finite number of colors N .

By contrast, the detailed properties of the low-lying states, beyond their mass, represent

opportunities for unambiguous comparisons. The ability of the energy-momentum tensor

to annihilate a glueball is a quantity of this type. Such matrix elements are somewhat

analogous to Fπ, which determines the width for the π+ → µ+ν decay.

Two other applications will be discussed in section 4. A long time ago the ITEP group

derived an approximate expression [4] for the branching ratio for a J/ψ to decay into a

scalar glueball in terms of the matrix element that we compute in this paper. We can thus

roughly estimate the expected production rate and compare to the experimental branching

ratios for scalar mesons.

Secondly we show how the tensor and scalar matrix elements can be used to constrain

the thermal spectral functions that determine respectively the shear and bulk viscosity of

the plasma of gluons [6, 7].

In section 2 we define the matrix elements to be computed, and give the relation

between the lattice observables and the continuum, relativistically covariant quantities.

Section 3 describes the lattice calculation. In section 4 we compare our results with those

of [3] and present the aforementioned applications. We end with a summary of the current

knowledge of the low-energy properties of SU(3) gauge theory.

2. Definitions

In this section we fix our notation, define the relevant matrix elements and show how they

can be obtained from Euclidean correlation functions.

2.1 Glueball matrix elements in the continuum

Decomposing the energy-momentum tensor Tµν into a traceless part θµν and a scalar part

θ via Tµν = θµν + 1
4δµνθ, the explicit Euclidean expressions are

θ(x) ≡ β(g)/(2g) F aρσ(x)F
a
ρσ(x) θµν(x) ≡

1

4
δµνF

a
ρσF

a
ρσ − F aµαF

a
να. (2.1)

The beta-function is defined by qdḡ/dq = β(ḡ) = −ḡ3(b0 + b1ḡ
2 + . . .) and b0 =

11N/(3(4π)2), b1 = 34N2/(3(4π)4) in the SU(N) pure gauge theory. The gauge action

reads Sg = 1
4F

a
µνF

a
µν in this notation.

We take over the notation of [3] and define the matrix elements

〈Ω|θ(x)|S, p 〉r = s e−ip·x (2.2)

〈Ω|θ12(x)|T, p, σ− 〉r = 〈Ω|1
2
(θ11 − θ22)(x)|T, p, σ+ 〉r = t e−ip·x, p = (0, 0, p3), (2.3)
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where |S〉 and |T 〉 respectively refer to the lightest scalar and tensor glueball states. The

labels σ± refer to the superpositions of helicity states |σ+〉 ∝ | + 2〉 + | − 2〉 and |σ−〉 ∝
| + 2〉 − | − 2〉. We define s′ and t′ in the same way for the first excited glueball in each

of these channels. The subscript ‘r’ (relativistic) indicates that the state has a Lorentz-

invariant normalization,

r〈U pσ|U q σ′〉r = 2p0(2π)3δ(p − q) δσσ′ , U = S, T. (2.4)

2.2 Glueball matrix elements from Euclidean correlation functions

We now discuss the extraction of glueball matrix elements from correlation functions in

the Euclidean theory, set up in a finite (but large) spatial volume. Separately for the scalar

and the tensor channels, we consider the correlation matrix

Aij(τ) = L−3 〈Oi(0) Oj(τ) 〉c, i, j = 0, 1, . . . No. (2.5)

The subscript ‘c’ indicates that we are dealing with the connected part and τ is the Eu-

clidean time variable. Let us consider first the scalar channel. The operator with label 0

is the definite-momentum projected local current,

O0(τ) =

∫
d3x eip·x θ(τ,x). (2.6)

Operators 1 through No are definite-momentum glueball operators, typically extended and

designed to have large overlaps on the lightest two states. In finite volume the spectral

representation of (2.5) reads

Aij(τ) =

∞∑

n=1

〈Ω|Oi|n〉 〈n|Oj |Ω〉 e−Enτ (2.7)

where states are normalized as in quantum mechanics, 〈n|m〉 = δnm and have momentum

p by momentum conservation. In the infinite volume limit, the connection between the

first state |1〉 with the one-particle state |S, p〉r introduced above is

√
2EpL3 |1〉 → |S, p〉r , (2.8)

where E2
p

= M2
S + p2. In particular, at large Euclidean time τ ,

A00(τ) = F 2
S e

−Epτ + F 2
S′ e−E

′
p
τ + O(e−E

′′
p
τ ). (2.9)

with

FS(L) ≡ L−3/2|〈0|O0|1〉| and lim
L→∞

FS(L) =
s√
2Ep

(2.10)

and similarly for the excited state |2〉 which in the infinite volume limit has energy E′2
p

=

M2
S′ + p2.

In the tensor channel, similar equations apply as long as p is collinear with the po-

larization axis. On the lattice, the equality between the two forms of eq. 2.3 is violated

by O(a2) discretization errors as well as finite-size effects. Here we use the second form
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exclusively, but we perform checks for both sources of systematic error. In the following

we will only use p = 0.

In the scalar case, the operator θ mixes with the unit operator (there is no other gauge-

invariant operator of dimension less than four). In the connected two-point functions (2.5),

the contributions of the unit operator cancel out, since the unit operator does not fluctuate.

Therefore no additional subtraction is required to remove the potentially quartically di-

vergent contributions of the unit operator. In the tensor case, the lattice preserves enough

symmetries to forbid any such mixing. The only normalization of FS and FT we need to

take care of is therefore multiplicative. We discuss this topic in the next section.

3. Lattice calculation

We simulate the SU(3) gauge theory using the Wilson plaquette action [8]

Sg =
1

g2
0

∑

x

∑

µ6=ν

Tr {1 − Pµν(x)}, (3.1)

Pµν(x) = Uµ(x)Uν(x+ aµ̂)Uµ(x+ aν̂)−1Uν(x)
−1. (3.2)

at three values of the bare coupling, β = 6/g2
0 = 6.0, 6.2 and 6.408. This corresponds to

values of the Sommer parameter r0/a = 5.368(35), 7.383(55) and 9.845(85) [9]. We use the

latter paper’s parametrization

log(a/r0) = −1.6804 − 1.7331 · x+ 0.7849 · x2 − 0.4428 · x3, x = β − 6 . (3.3)

The lattice size is respectively 163 ×24, 204 and 284. On the coarsest lattice, we also check

for finite-volume effects by performing an additional simulation on a 203 × 24 lattice. The

glueball spectrum was determined rather accurately in [10] at these lattice spacings. At

the smallest lattice spacing, we apply a conversion factor (given by the ratio of r0 values)

to convert the spectrum from β = 6.4 to β = 6.408. We use the standard combination of

heatbath and overrelaxation [11 – 14] sweeps for the update in a ratio increasing from 3 to

5 as the lattice spacing is decreased. The overall number of sweeps between measurements

was also increased, from 8 to 12.

We use the ‘plaquette’ discretization of the energy-momentum tensor as described

in [15] (x⊙ = x+ a
2

∑
µ µ̂),

a3
∑

x

θ00(x⊙) =
2χ(g0)Zg(g0)

ag2
0

∑

x

ReTr

[∑

k

P0k(x) −
∑

k<l

1

2
[Pkl(x) + Pkl(x+ a0̂)]

]
,

a3
∑

x

θ(x⊙) =
2χs(g0)

a

−dg−2
0

d log a

∑

x

ReTr

[∑

k

P0k(x) +
∑

k<l

1

2
[Pkl(x) + Pkl(x+ a0̂)]

]
.

The components θ11 and θ22 are obtained from θ00 by permuting the Euclidean indices

of Pµν , and therefore also require the same normalization factors. In these expressions,

Pµν(x) can be formed directly by the dynamical variables Uµ(x), or by any other parallel

transporter that has the same gauge and space-time transformation properties as Uµ(x)
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β χs(g0) χ(g0)

6.000 0.9951(77) 0.5489(68)

6.093 0.9778(89) 0.546(14)

6.180 0.976(12) 0.596(20)

6.295 0.953(20) 0.563(28)

6.408 0.985(42) 0.612(49)

β aMS aM∗
S aMT aM∗

T

6.000 0.7005(47) 1.167(25) 1.0596(64) 1.433(14)

6.100 0.6021(85) 1.038(15) 0.916(11) 1.180(34)

6.200 0.5197(51) 0.929(10) 0.7784(79) 1.032(20)

6.400 0.3960(93) 0.690(18) 0.5758(32) 0.795(28)

Table 1: Left: normalization factors for the HYP-smeared plaquettes relative to the bare plaquette.

Right: the glueball masses from [10] relevant to this work.

and that is local on the scale of the lattice spacing. For the calculation of glueball matrix

elements we will make use of the HYP-smeared links [16] which satisfy these requirements.

We apply only one iteration of HYP-smearing, which means that the support of the smeared

link is contained in the adjacent lattice hypercubes, and use the smearing parameters

given in [16]. It was shown explicitly in [2, 15] that using HYP-smeared links inside the

‘plaquette’ discretization of the energy-momentum tensor reduces the variance on its one-

point functions.

The normalization Zg(g0) of the discretization based on the simple link variables Uµ(x)

is fixed by lattice sum rules, as is well-known in the context of thermodynamics [17] (in

this ‘bare-plaquette’ case, χ and χs are simply unity by our convention). We use the

parametrization

Zg(g0) =
1 − 1.0225g2

0 + 0.1305g4
0

1 − 0.8557g2
0

, (β ≥ 5.7). (3.4)

given in [6] based on the data in [18] and the one-loop perturbation theory [19].

We determine the normalization factors χ(g0) and χs(g0) for the HYP case non-

perturbatively, following the same strategy as in [15]. They correspond to the normal-

ization of the HYP-link based discretization relative to the bare-link based discretization.

A straightforward way to determine them is to match the pressure and energy density com-

puted with either discretization at a specific temperature. The choice T = 1.21Tc made

in [15, 2] insures that a large signal is obtained for 〈θ〉 and that T−4〈θ00〉 is already more

than half its Stefan-Boltzmann limit. Secondly, this choice implies Nτ ≥ 6 for β ≥ 6.0, so

that large cutoff effects are avoided. These relative normalization factors χs(g0) and χ(g0)

are given in table 1. The data is conveniently parametrized as (6 ≤ 6/g2
0 ≤ 6.408)

χs(g0) = 0.9731 + 0.67(g2
0 − 6/6.18) (3.5)

χ(g0) = 0.5701 − 0.77(g2
0 − 6/6.18). (3.6)

In both cases, the absolute error increases from 0.007 at β = 6 to 0.020 at β = 6.408. We

extract dg−2
0 /d log a from the parametrization (3.3).

We employ linear combinations of Wilson loops that project in the A++
1 and E++

irreducible representations of the cubic group. They are constructed from spatial links

variables, using smearing and blocking as described in [20].
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3.1 Extraction of the glueball matrix elements

The glueball matrix elements can be extracted at sufficiently large τ using the fit ansatz

Âij(τ) =
∑

n=1,2

c(i)n c(j)n e−Mnτ (3.7)

⇒ FU = |c(0)1 | , FU ′ = |c(0)2 |, U = S, T. (3.8)

A few remarks are in order:

• the correlator A00 is not included in the fit.

• in our discretization the operator O0 is defined at half-integer times (in lattice units);

thus for i ≥ 1, j = 0, τ/a takes half integer values in (3.7), whereas for i, j ≥ 1 it

takes integer values.

• the glueball spectrum is already accurately known at the same simulations parameters

from ([10], table 7.1). We reproduce the values Mn in table 1 and treat them as

a ‘prior’.

Note however that since this information is exact within its quoted error, it is unnecessary

to invoke Bayesian arguments to make use of it. Therefore we determine the fit parameters

by minimizing χ2 = χ2
I + χ2

II, with

χ2
I =

∑

i≤j

k≤l

vij∑

τ=uij

vkl∑

τ ′=ukl

[Aij(τ) − Âij(τ)] C
−1

(ijτ),(klτ ′) [Akl(τ
′) − Âkl(τ

′)] (3.9)

χ2
II =

∑

n=1,2

(Mn −Mn)
2

σ2
n

. (3.10)

We use the full correlation matrix C in this fit. Autocorrelation effects in Monte-Carlo

time were found to be negligible, so that C(ijτ),(klτ ′) could be taken to be the usual estimator

of N−1
mst[〈Aij(τ)Akl(τ ′)〉 − 〈Aij(τ)〉〈Akl(τ ′)〉], where 〈.〉 are path integral averages and Nmst

is the number of measurements. We estimated the relative error on the eigenvalues of C

and found them to be small, due to the high statistics of the calculation. This makes the

inversion of C a stable procedure.

We used two non-local operators in the fits, i.e. the indices i, j, k, l ≤ 2 in eq. 3.9.

These operators were linear combinations of non-local operators in the relevant lattice

irreducible representation designed to have a good projection on the lightest two states.

Increasing the number of operators in the fit did not seem to improve the determination

of the physical parameters. The results and minimized χ2 of these fits are given in table 2.

The χ2 are of order unity, with a tendency to be slightly larger that one. This may be due

(partly) to the fact that the standard estimator for the χ2 we are using is an upward-biased

one [21]. Beyond the value of the χ2 it is important to check that the fit is stable against

variations in the fit ranges uij ≤ τ ≤ vij , and that no strong trend is seen in Aij(τ)/Âij(τ)

as a function of τ within the fit range. Figure 1 displays this ratio in the scalar and in the

– 6 –
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 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1
x0 / r0

Data / Fit  ( Scalar, β = 6.408    χ2 = 1.79 )

A01

A02

A11

A22

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1
x0 / r0

Data / Fit  ( Tensor, β = 6.408    χ2 = 1.34 )

A01

A02

A11

A22

Figure 1: The ratio of the scalar (top) and tensor (bottom) correlators to the fit, eq. 3.7. The

arrows indicate for each correlator where the fit starts.

tensor sectors for the simulation at the smallest lattice spacing. We see that the correlators

A01 and A11 have small deviations from the fit even outside the fit range. This gives us

confidence that excited state (n ≥ 3) contaminations are negligible in the fit range. This
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 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8
x0 / r0

Effective Mass and Matrix Element

r0
5/2FS,eff

r0Meff

Figure 2: The effective mass and matrix element in the scalar sector at β = 6, 163 × 24 lattice.

The fit eq. 3.7 is shown. The fit starts at x0 = a ≈ 0.19r0 for the diagonal correlator and at

x0 = 5

2
a ≈ 0.47r0 for the correlator between the local and the smeared operator.

property is much less satisfied for the A02 and A22 correlators. Although the fit range

for the correlators starts further out in τ , this implies that the control over excited state

contributions is much less good for FS∗ and FT ∗ . We will therefore not include these matrix

elements in our final list of results.

We may use the effective mass and the effective matrix element

ameff(t) = log
A11(τ)

A11(τ + a)
, (3.11)

FU,eff

(
τ − 1

2
a

)
= A01

(
τ − 1

2
a

)
A11(τ − a)(τ−a)/2a

A11(τ)τ/2a
, U = S, T, τ = 2a, 3a, . . . (3.12)

as a way to visualize the contributions of excited states to the physical quantities we

extract (see figure 2). The effective quantities computed from the fit to the correlators

(eq. (3.9), (3.10)) are also shown as curves on the plot. The fit looks convincing. We find

that, in general, the method of determining the mass and matrix elements from the effective

quantities is less stable than fitting the correlators. A possible reason for this is that the

histograms of ratios as in eq. 3.12 can become arbitrarily non-Gaussian if the denominator

is noisy (e.g. at large τ), even if the correlators were perfectly Gaussian distributed.

Finally, increasing the volume from 163 to 203 at β = 6.0 does not affect the matrix

elements in a statistically significant way (see table 2). An effect at the subpercent level is

seen on some of the glueball masses, because they are so accurately determined, but this

does not affect the discussion in the rest of this paper.
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β aMS aMS∗ aMT aMT∗

6.000 (203) 0.7032(16) 1.1733(37) 1.0587(15) 1.43261(53)

6.000 (163) 0.6966(16) 1.1747(58) 1.0592(22) 1.4358(10)

6.200 0.51918(96) 0.93010(30) 0.7783(20) 1.0399(22)

6.408 0.39603(63) 0.6946(11) 0.5937(36) 0.8322(92)

β FSr
5/2
0 FS∗r

5/2
0 χ2/ν FTr

5/2
0 FT∗r

5/2
0 χ2/ν

6.000 (203) 5.05(06)(09) 6.53(30)(12) 1.33 3.63(26)(08) 8.49(78)(27) 1.29

6.000 (163) 4.95(03)(09) 6.21(19)(12) 1.36 3.41(11)(08) 7.72(40)(25) 0.94

6.200 4.43(25)(09) 10.25(90)(22) 1.50 3.07(32)(09) 10.37(68)(29) 1.29

6.408 4.55(36)(14) 9.75(54)(31) 1.79 2.30(33)(10) 11.04(38)(48) 1.34

Table 2: The scalar (S) and tensor (T) glueball masses and matrix elements extracted from the

fits. In the lower table, the first error is the uncertainty coming from the bare matrix element in

lattice units, the second is the cumulated error of all the other factors entering the renormalization

group invariant quantity.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.01  0.02  0.03  0.04

(a / r0)2

Continuum Extrapolation of Glueball Matrix Elements

FSr0
5/2

FS*r0
5/2

FTr0
5/2

FT*r0
5/2

Figure 3: Continuum extrapolation.

3.2 Continuum extrapolation

Having obtained the matrix elements at three different lattice spacings, we can attempt a

continuum extrapolation linear in (a/r0)
2, as illustrated on figure 3. We find

FSr
5/2
0 = 4.13(40) , χ2/d.o.f. = 0.46 (3.13)

FTr
5/2
0 = 2.10(41) , χ2/d.o.f. = 0.99 (3.14)
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The extrapolations are satisfactory: the χ2 is small, the slopes of the extrapolations are

small to moderate. In particular the continuum value is statistically compatible with the

value from the smallest lattice spacing.

We do not attempt an extrapolation for the first excited states. Indeed it is clear from

figure 3 that the β = 6.0 data does not lie in the a2 scaling region. The values from the

lighter two lattice spacings are consistent with eachother, suggesting that cutoff effects are

small beyond β = 6.2. Our best estimate of FS′r
5/2
0 and FT′r

5/2
0 are thus the values at

the smallest lattice spacing, but one should keep in mind that our control over excited

state contamination is far less good for these matrix elements; the induced systematic

uncertainty is comparable or larger than the statistical error.

4. Applications and summary

In the following, we compare our results to previously obtained ones. Then we present two

applications of the computed matrix elements. We end with a summary of our knowledge

of non-perturbative dimensionless ratios in the SU(3) gauge theory.

4.1 Technical comparison

We can compare our results to those of [3]. We find1,

this work Chen et al. (4.1)

sr30 = 11.6(1.1) 15.8(3.2) (4.2)

tr30 = 7.1(1.4) 7.5(2.8) (4.3)

Comparing the matrix elements in units of r0 saves us from having to settle on a value for

r0 in fm (r−1
0 = 410MeV was used in [3]). We conclude that our results are in satisfactory

agreement with those of [3], and the statistical uncertainties have been reduced by a factor

of at least two.

We stress that while our continuum extrapolation uses data at lattice spacings (a/r0)
2

in the range 0.010 to 0.035, the continuum extrapolation of [3] uses data in the range of

spatial lattice spacings 0.044 to 0.22. The control of the continuum limit is thus qualita-

tively different. One might worry that the support of the field strength operators used for

the ‘type II’ discretization in [3] varies between 0.4fm and 0.9fm. On the other hand, the

authors do find good agreement between certain observables which only become strictly

equal in the continuum limit.

We have used non-perturbative renormalization factors at every lattice spacing, while

the procedure used in [3] for s and t implies that the continuum is approached asymptoti-

cally with O(g2
0) as well as O(a2) corrections.

Simulating at small lattice spacings comes at a heavy computational price for these

observables: the signal-to-noise ratio for matrix elements of the gluonic dimension four

operators decreases with the fourth power of the lattice spacing [2]. This explains why our

statistical errors on the bare matrix elements are somewhat larger than in [3].

1As compared to [3], our s contains an extra factor of 11/(4π)2 (coming from the beta-function).
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The use of a coarse spatial lattice allowed the authors of [3] to reach volumes signifi-

cantly larger than ours in physical units. We have however checked for finite volume effects

explicitly, and find no significant variation in the matrix elements. It is known [22] that the

low-lying spectrum of glueballs exhibits remarkably small finite-size effects for L > 2.5r0
(and for certain channels they remain small for even smaller box sizes).

4.2 Glueball production rate in radiative J/ψ decays

First of all, we can compare our result for s with the QCD sum rule prediction [4]

s ≈ 11

4π

√
G0

2b0
MS . (4.4)

Using G0 = 0.012GeV4 (the ‘gluon condensate’) and r−1
0 = 410MeV this leads to sr30 ≈ 6.0,

almost a factor two smaller than our result. Since we regard the gluon condensate as a

phenomenological parameter, this disagreement does not surprise us too much.

We may use our value for s to estimate the partial width of J/ψ to radiatively decay into

a scalar glueball. An approximate expression for this experimentally observable quantity

was derived in [4],

Γ(J/ψ → G0γ) ≈
8π α3

52 · 112 · 38

m4
J/ψ s

2

m8
c Γ(J/ψ → e+e−)

. (4.5)

Here mc ≃ 1250MeV is the charm mass in the MS scheme at scale µ = mc, mJ/ψ ≃
3097MeV is the J/ψ mass, α ≃ 1

137 is the fine structure constant and Γ(J/ψ → e+e−) ≃
5.55keV. The ingredients that go into this formula are the 1/mc expansion, a dispersion

relation for the charm-quark loop induced γγ → gg transition and the assumption that the

J/ψ contribution dominates the spectral integral. This leads to the estimate

Br(J/ψ → G0γ) ≈ 0.009. (4.6)

The authors of [4] also suggest that a more accurate prediction is

Br(J/ψ → G0γ) =

(
3π

11

)2 s2 · Br(J/ψ → η′γ)

|〈Ω|αsF aµν F̃ aµν |η′〉|2
. (4.7)

Here the assumption about the dominance of the J/ψ is replaced by the assumption that

the relative size of the J/ψ and the ‘continuum’ contributions are identical in the scalar

and the pseudoscalar channels. Using eq. (5) of [23], we can trade the properties of η′ for

the corresponding ones for η and use the SU(3)f result [23]

〈Ω|αsF aµν F̃ aµν |η〉 =
4π

3

√
3

2
fηm

2
η (4.8)

with fη ≈ 170MeV. Then we obtain

Br(J/ψ → G0γ) ≈
33

112 · 23

(
1 − x′2

1 − x2

)3
s2 · Br(J/ψ → ηγ)

f2
ηm

4
η

= 5.6(1.7) · Br(J/ψ → ηγ).

(4.9)
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Here x = mη/mJ/ψ and x′ = mη′/mJ/ψ. Since Br(J/ψ → ηγ) = 0.98(10) · 10−3 [24], we

obtain a somewhat lower result than (4.6). This is still a rather large branching ratio.

For instance, the PDG [24] gives Br(J/ψ → γf0(1710)) ≈ 1.5(3) · 10−3 if one adds up the

contributions of the γKK, γππ and γωω channels. The production rate of f0(1500) is

even smaller. According to (4.9), if any of the f0(1370), f0(1500) or f0(1710) states had a

glueball component close to unity, they would be produced more copiously than observed.

Therefore, eq. 4.9 suggests that the glueball component is quite strongly diluted among

the three states. This conclusion is also reached by doing detailed parametrizations and

fits to experimental data of the mixing pattern [25, 26].

4.3 Constraining thermal spectral functions

Another application arises in the calculation of transport coefficients in the plasma of

gluons. Indeed the local-current two-point function A00 can be expressed in terms of the

spectral function ρ(ω,p, T ),

A00(τ,p, T ) =

∫ ∞

0
dω ρ(ω,p, T )

coshω( 1
2T − τ)

sinh ω
2T

. (4.10)

Here T is the temperature. In the tensor channel the shear viscosity is then given by

η(T ) = π lim
ω→0

ρ(ω,0, T )

ω
. (4.11)

Because A00 is dominated by ultraviolet contributions that are temperature independent,

in [27] we proposed to subtract from A00 what that correlator would be if the spectral

function was the same as at T = 0, before solving eq. 4.10 for ρ(ω,p, T ). Let us call that

would-be correlator Ã00. The T = 0 spectral function has a simple expression in terms of

energy levels and matrix elements of the kind we calculated in this paper,

ρ(ω,p, T = 0) = L−3
∑

n

δ(ω − En) |〈0|O0|n〉|2. (4.12)

Therefore, we find that the contributions of the first two terms in eq. 4.12 to Ã00(τ,0, T )

read (at Nt = 1/(aT ) = 8)

Ã00(τ,0, 1.24Tc) = 1.25 + 5.2 + . . . (4.13)

Ã00(τ,0, 1.65Tc) = 0.388 + 3.7 + . . . (4.14)

These contributions are substantial since A00(τ,0, T ) = 8.05(32) and 8.73(33) respec-

tively [27]. The first excited state contribution appears to be particularly large. Due

to possible higher state contamination in our estimate of FS∗ and FT ∗ (see section 3), it

may be that the second terms in eq. 4.13 or 4.14 effectively amounts to the contribution

of more than one state.
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4.4 A summary of the low-energy parameters of SU(3) gauge theory

We finish with a summary of our knowledge of low-energy dimensionless quantities in

the SU(3) gauge theory. The results we use were all obtained with the Wilson plaquette

action [8] and we extrapolate them to the continuum. We use the parametrization of

(r0/a)(β) from [9]. If σ is the string tension, Tc the deconfining temperature and ΛMS the

Lambda parameter in the MS scheme, we find in the continuum

MS r0 = 3.958(47) χ2/(4 − 2) = 0.09, (4.15)

MT r0 = 5.878(77) χ2/(4 − 2) = 0.6, (4.16)

s r30 = 11.6(1.1) χ2/(3 − 2) = 0.5, (4.17)

t r30 = 7.1(1.4) χ2/(3 − 2) = 1.0, (4.18)
√
σ r0 = 1.1611(95) χ2/(5 − 2) = 0.1, (4.19)

Tc r0 = 0.7463(64) χ2/(4 − 2) = 0.3, (4.20)

ΛMS r0 = 0.60(5). (4.21)

The data for aMS , aMT sa3 and ta3 is from this work, plus the β = 6.1 glueball mass

data from [10]. The string tension a
√
σ is taken from [20] (β ≥ 5.8000) and from [10]

(β = 6.4). We took the critical values of β for given Nt = 1/(aT ) from [28] (Nt = 6, 8, 12)

and from [29] (Nt = 5). The Lambda parameter value is the data of [30]. We do a

continuum extrapolation linear in (a/r0)
2 for the first five quantities. We extrapolate Tcr0

as a function of 1/N2
t . The quantity ΛMSr0 is already given in the continuum in [30].

The overall level of accuracy achieved is remarkable. The agreement of the two glueball

masses with the data of [3], obtained with a rather different action, represents a successful

check of universality at the 2–3 percent level.

5. Conclusion

In summary, we have computed scalar and tensor glueball matrix elements in SU(3) gauge

theory with improved precision. A straightforward application to the production of scalar

glueballs in J/ψ radiative decays suggests that none of the known scalar mesons can contain

too large a glueball component. Finally we gave a summary of the current knowledge

of seven non-perturbative observables of the SU(3) gauge theory. We hope that these

quantities constitute a useful set for models and semi-analytical methods to calibrate on

and compare predictions to.
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